
Module 3: The JOIN Operators

Introduction to Joining Multiple Tables

The typical relational database spreads related data across multiple tables. Most of the time your
queries will need to retrieve columns from several different tables and join these together based on
matching row values or another logical comparison.

To introduce joins, we’re going to start with a simple, hypothetical database named JoinDemo. This
database contains three tables:

1. dbo.MsMertz, which contains a list of the five students in Ms. Mertz’ class;
2. dbo.TestScores, which contains a list of test scores of four students, three of whom are in Ms.

Mertz’ class;
3. dbo. CurlingTeam, which contains a list of the four students on the Curling team. Three of these

students are in Ms. Mertz’ class.

Creating the JoinDemo tables

Rather than create a new database, for this demonstration we’re going to simply insert our three tables
into CarDealer and add a few rows of data to each.

Demonstration Steps

1. Open a new query window against the JoinDemo database. Enter and run the following code:

Create table MsMertz

(
 StudentID int,

MODULE 3: THE JOIN OPERATORS

2 May 29, 2024

 FirstName varchar(20),
 LastName varchar(20)
);

insert into MsMertz (StudentID,FirstName,LastName) values
(1,'Jimmy','McGill'),(2,'Mike','Ehrmantraut'),
(3,'Kim','Wexler'),(4,'Nacho','Varga'),(5,'Howard','Hamlin');

Create table TestScores
(
 TestTakerNum int,
 StudentID int,
 TestScore int
);

insert into TestScores (TestTakerNum,StudentID,TestScore) values
(1,1,100),(2,2,90),(3,35,96),(5,5,98);

create table CurlingTeam
(
 MemberID int,
 StudentID int,
 Position varchar(10)
)

insert into CurlingTeam (MemberID,StudentID,Position) values
(1,2,'Lead'),(2,5,'Third'),(3,10,'Skipper')

1. The above TSQL code will create our three tables and add data to each. Refresh the Tables list
under JoinDemo in ObjectExplorer to see the three new tables.

2. Run a SELECT * query against each of the three tables to see their contents. Note that all three
tables share a StudentID field.

CROSS JOIN, and the Predicate Applied to the Full Cartesian Product

To understand how joins works, we’re fist going to look at the CROSS JOIN operation. CROSS JOIN
simply crosses each row in one table with each row in another other. In practice this isn’t something we
need to do very often, and the use of CROSS JOIN is limited to things like creating sample data and
tables of numbers. But as we’ll see, CROSS JOIN demonstrates something very important about the way
other JOIN operations work – the full Cartesian product.

Consider the following query. Each row in dbo.MsMertz will be crossed with each row in
dbo.TestScores. As there are five rows in dbo.MsMertz and four rows in dbo.TestScores, there will be 5
x 4 or 20 rows in the full Cartesian product produced by CROSS JOIN:

SELECT
 m.StudentID as [m.StudentID]
 ,m.FirstName
 ,m.LastName
 ,t.StudentID as [t.StudentID]
 ,t.TestTakerNum
 ,t.TestScore
FROM dbo.MsMertz m

MODULE 3: THE JOIN OPERATORS

3 May 29, 2024

CROSS JOIN dbo.TestScores t;

Table dbo.MsMertz Table dbo.TestScores

Full Cartesian Product

As mentioned earlier, we generally aren’t interested in the full Cartesian product. It would be more
useful to only select the rows from each table that having matching values on a particular column. In
this case, we’d like to return only those rows from the full Cartesian product that have the same
StudentID value in both tables. In other words, when we look at the full Cartesian product, there are
only three rows we want from it:

1. Jimmy McGill
2. Mike Ehrmantraut
3. Howard Hamlin

MODULE 3: THE JOIN OPERATORS

4 May 29, 2024

We want those three rows because they are the only rows that have matching values on the StudentID
column in both tables.

We could apply a predicate in a WHERE clause to the full Cartesian product to select just those rows, as
follows:

SELECT
 m.StudentID as [m.StudentID]
 ,m.FirstName
 ,m.LastName
 ,t.StudentID as [t.StudentID]
 ,t.TestTakerNum
 ,t.TestScore
FROM dbo.MsMertz m
CROSS JOIN dbo.TestScores t
where m.StudentID=t.StudentID;

Technically, the above query performs an inner join. Our results consist only of the records from the full
Cartesian product for which the WHERE clause predicate evaluates to true. However, in the next section
we’ll investigate the JOIN operator, which allows us to perform the JOIN without having to use a WHERE
clause.

3.3 INNER JOIN

Now let’s take a look at the most frequently used JOIN operation, the INNER JOIN. Most queries written
for data analysis and reporting purposes will include one or more inner join operations.

The INNER JOIN is the default join, so the word INNER can be left out. Let’s say we want to produce a
list of the students in Ms. Mertz’ class who took the test. The following query will do that:

SELECT
 m.StudentID as [m.StudentID]
 ,m.FirstName
 ,m.LastName
 ,t.StudentID as [t.StudentID]
 ,t.TestTakerNum
 ,t.TestScore
FROM dbo.MsMertz m
JOIN dbo.TestScores t
ON m.StudentID=t.StudentID;

Table dbo.MsMertz

Table dbo.TestScores

Result of INNER JOIN on m.StudentID = t.StudentID

MODULE 3: THE JOIN OPERATORS

5 May 29, 2024

As you can see, the result contains 3 rows. Here’s how it works.

1. The full Cartesian product is produced by crossing each row of dbo.MsMertz with each row of
dbo.TestScores to produce a full Cartesian product of 20 rows.

2. The ON operator is applied. The On operator applies a predicate to each row in the full
Cartesian product. A predicate is a logical expression that evaluates to true, false, or null. Only
those rows in the full Cartesian product for which the predicate is true are retained in the result
set to be returned by the FROM clause. In this case, only those rows that have matching values
on the StudentID field from each table are returned.

MODULE 3: THE JOIN OPERATORS

6 May 29, 2024

The diagram above shows the 20 rows of the full Cartesian product. For three of these rows the
predicate specified by ON evaluates to true because there is a match between the StudentID column in
dbo.MsMertz and the StudentID column in dbo.TestScores. These rows will be returned in the result
set. The rest will not.

Notes about JOINS:

1. The columns in the ON operation are usually the foreign key of one table and the primary key of
the other, although this isn’t required and will not always be the case.

2. Primary keys and their foreign key dependencies will generally have the same name, therefore
the columns in the ON operation will too. Again, this is not required and often won’t be the
case.

3. Tables joined on foreign key-primary key pairings will almost always be an equi-join, meaning
the predicate will be a simple column value match. However, any logical expression can be used
within ON.

OUTER JOINS

There are three versions of the OUTER JOIN: RIGHT OUTER JOIN, LEFT OUTER JOIN, and FULL OUTER
JOIN. As these are all OUTER joins, the word OUTER can be left out, leaving RIGHT JOIN, LEFT JOIN, and
FULL JOIN. The outer joins work in a similar way to the inner join, except as follows:

1. RIGHT JOIN: Non-matching records from the table to the RIGHT of the JOIN operator are
returned;

2. LEFT JOIN: Non-matching records from the table to the LEFT of the JOIN operator are returned;
3. FULL JOIN: Non-matching records from the table on each side of the JOIN operator are

returned.

3.4.1 LEFT OUTER JOIN

Let’s say we want to retrieve a list of all the students in Ms. Mertz class, along with their test scores if
the score is listed in dbo.TestScores. The following query will do this:

SELECT
 m.StudentID as [m.StudentID]
 ,m.FirstName
 ,m.LastName
 ,t.StudentID as [t.StudentID]
 ,t.TestTakerNum
 ,t.TestScore
FROM dbo.MsMertz m
LEFT JOIN dbo.TestScores t
ON m.StudentID=t.StudentID;

MODULE 3: THE JOIN OPERATORS

7 May 29, 2024

Results of the above LEFT JOIN

As you can see in the result set, all five students are returned. Kim and Nacho, however, have NULL in
the t.StudentID, t.TestTakeNum, and TestScore columns since they did not take the test.

The LEFT JOIN is the same as the JOIN except that the non-matching records from the table to the LEFT
of the JOIN operator are returned. In this case, since there is no StudentID value in dbo.TestScores for
the non-matching records, NULL appears in the result set for the columns from dbo.TestScores.

3.4.2 RIGHT OUTER JOIN

If we simply change this to a RIGHT JOIN, the same thing happens except that this time the non-
matching records in the table to the RIGHT of the join operator are returned:

SELECT
 m.StudentID as [m.StudentID]
 ,m.FirstName
 ,m.LastName
 ,t.StudentID as [t.StudentID]
 ,t.TestTakerNum
 ,t.TestScore
FROM dbo.MsMertz m
RIGHT JOIN dbo.TestScores t
ON m.StudentID=t.StudentID;

In this case, there is one record in dbo.TestScores for which the StudentID value does not match any
StudentID values in dbo.MsMertz.

Results of the above RIGHT JOIN

MODULE 3: THE JOIN OPERATORS

8 May 29, 2024

3.4.3 FULL OUTER JOIN

Finally, we have the FULL JOIN. This is just like the others, except that the non-matching rows from both
tables are returned. The following query returns six rows, with NULL values from dbo.MsMertz for the
student with StudentID 35 in dbo.TestScores, and NULL values from dbo.TestScores for Kim Wexler and
Nacho Varga, who are in Ms. Mertz class but don’t have records in dbo.TestScores.

SELECT
 m.StudentID as [m.StudentID]
 ,m.FirstName
 ,m.LastName
 ,t.StudentID as [t.StudentID]
 ,t.TestTakerNum
 ,t.TestScore
FROM dbo.MsMertz m
FULL JOIN dbo.TestScores t
ON m.StudentID=t.StudentID;

Result of the above FULL JOIN

3.5.1 Joining Three Tables with INNER JOIN

Now let’s join a third table. Suppose we want to produce a list of the students in Ms. Mertz’ class who
took the test and are also on the curling team. The query below returns the two students from Ms.
Mertz’ class who appear in both the dbo.TestScores and dbo.CurlingTeam tables.

SELECT
 m.StudentID as [m.StudentID]
 ,m.FirstName
 ,m.LastName
 ,t.StudentID as [t.StudentID]
 ,t.TestTakerNum
 ,t.TestScore
 ,ct.StudentID as [ct.StudentID]
 ,ct.MemberID
 ,ct.Position
FROM dbo.MsMertz m
JOIN dbo.TestScores t
ON m.StudentID=t.StudentID
JOIN dbo.CurlingTeam ct
ON m.StudentID=ct.StudentID;

MODULE 3: THE JOIN OPERATORS

9 May 29, 2024

Results of the above query in which three tables are joined

Here’s how it works:

1. Tables dbo.MsMertz and dbo.TestScores are joined exactly as before. A full Cartesian product is
produced, then the ON operation is performed and only the matching records are retained. This
produces an intermediate result set.

2. The JOIN operation is then performed on results of the first JOIN and the dbo.CurlingTeam table.
Again, since this is an INNER JOIN, only matching records from both sides of the JOIN operator
are retained.

3.5.2 Combining INNER and OUTER JOINs

Combining INNER and OUTER JOINS follows the same rules. The query below returns the three students
in Ms. Mertz’ class who took the test, along with the curling team member ID and position for the
students who are in Ms. Mertz’ class AND took the test AND are on the curling team. Jimmy McGill is in
Ms. Mertz class and took the test, but is not on the curling team, so he has NULL values for the columns
from dbo.CurlingTeam.

SELECT
 m.StudentID as [m.StudentID]
 ,m.FirstName
 ,m.LastName
 ,t.StudentID as [t.StudentID]
 ,t.TestTakerNum
 ,t.TestScore
 ,ct.StudentID as [ct.StudentID]
 ,ct.MemberID
 ,ct.Position
FROM dbo.MsMertz m
JOIN dbo.TestScores t
ON m.StudentID=t.StudentID
LEFT JOIN dbo.CurlingTeam ct
ON m.StudentID=ct.StudentID;

Results of the above INNER JOIN followed by OUTER JOIN

MODULE 3: THE JOIN OPERATORS

10 May 29, 2024

1. The INNER JOIN is performed between dbo.MsMertz and dbo.TestScores, producing an
intermediate result with records for the three students (Jimmy McGill, Mike Ehrmantraut, and
Howard Hamlin) who have test scores in dbo.TestScores.

2. The LEFT JOIN is performed between this intermediate result and dbo.CurlingTeam. Mike and
Howard are both on the curling team, but Jimmy is not, so NULL values appear for Jimmy in the
columns from dbo.CurlingTeam.

3.5.3 Joining More Than Three Tables

Joining additional tables happens in exactly the same way. Now that we’ve learned the basics of JOINS,
let’s go back to the CarDealer database. Let’s say we want to produce a list of all car sales for the year
2011, including the make and model of the car sold, the sales amount, and the name of the customer
who purchased the car. As is typical of most SELECT queries you’ll write, the JOINS will be between the
foreign key in one table and the primary key of another.

To produce the result set we need, we’ll join dbo.Sales to dbo.Customer, then join dbo.Person and
dbo.Cars. As these will all be INNER JOINS, the order in which tables are joined won’t matter. Finally,
we’ll need to include a WHERE clause in order to filter out all sales not occurring in 2011.

SELECT
 c.Make
 ,c.Model
 ,s.SalesAmount
 ,p.LastName + ', ' + p.FirstName as [Customer]
FROM dbo.Sales s
JOIN dbo.Cars c
ON s.CarID=c.CarID
JOIN dbo.Customers cust
ON s.CustomerID=cust.CustomerID
JOIN dbo.Person p
ON cust.PersonID=p.PersonID
WHERE s.SalesDate >= '20110101' AND s.SalesDate < '20120101'
2

Results of the Above Four-Way JOIN

MODULE 3: THE JOIN OPERATORS

11 May 29, 2024

3.6 Combining JOIN Operations with WHERE and ORDER BY

Remember the order of operations:

1. FROM
2. WHERE
3. GROUP BY
4. SELECT list
5. ORDER BY

Since JOIN (regardless of the type) is an operation within the FROM clause, all JOINS are processed and a
result set produced before the WHERE clause is processed. So the WHERE clause operates on the
individual rows in the result set produced by all JOINS in the FROM clause.

Consider the following query:

SELECT
 p.LastName + ', ' + p.FirstName as [Sales Person]
 ,s.SalesAmount
FROM dbo.Sales s
JOIN dbo.SalesPeople sp
ON s.SalesPersonID=sp.EmployeeID
JOIN dbo.Person p
ON sp.PersonID=p.PersonID
WHERE sp.Active=1 AND s.SalesDate >= '20110101' AND s.SalesDate < '20120101'
ORDER BY s.SalesAmount DESC

MODULE 3: THE JOIN OPERATORS

12 May 29, 2024

Results of the Above Query Combining a Three-Way Join With WHERE and ORDER BY

1. The JOIN operations in the FROM clause are performed, producing a result set containing all
sales people who have ever sold a car, along with their names and the sales amount of the car
sold.

2. The WHERE clause is processed, and only sales in the year 2011 made by currently active sales
people are kept in the result set.

3. The SELECT list is processed and a column alias is assigned to the string concatenation
expression producing the full name of the sales person.

4. Finally, the results are sorted by the sales amount column and the result set is returned.

Additional Reading

SQL Joins. A W3 Schools tutorial on SQL Join operations. https://www.w3schools.com/sql/sql_join.asp.

Joins (SQL Server). Microsoft documentation on Joins. https://docs.microsoft.com/en-us/sql/relational-
databases/performance/joins?view=sql-server-ver16

https://www.w3schools.com/sql/sql_join.asp
https://docs.microsoft.com/en-us/sql/relational-databases/performance/joins?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/performance/joins?view=sql-server-ver16

